Dietary Reference Intakes (DRIs): Recommended Intakes for Individuals, Vitamins

						Thia-	Ribo-					Panto-		
Life Stage Group	Vit A (µg/d) ^a	Vit C (mg/d)	Vit D $(\mu g/d)^{b,c}$	Vit E $(mg/d)^d$	Vit K (µg/d)	min (mg/d)	flavin (mg/d)	Niacin (mg/d) ^e	Vit B ₆ (mg/d)	Folate (µg/d) ^f	Vit B_{12} (µg/d)	thenic Acid (mg/d)	Biotin (µg/d)	Choline ^s (mg/d)
Infants	40													
0–6 mo	400*	40*	5*	4*	2.0*	0.2*	0.3*	2*	0.1*	65*	0.4*	1.7*	5*	125*
7–12 mo	500*	50*	5*	5*	2.5*	0.3*	0.4*	4*	0.3*	80*	0.5*	1.8*	6*	150*
Children														
1–3 y	300	15	5*	6	30*	0.5	0.5	6	0.5	150	0.9	2*	8*	200*
4–8 y	400	25	5*	7	55*	0.6	0.6	8	0.6	200	1.2	3*	12*	250*
Males														
9–13 y	600	45	5*	11	60*	0.9	0.9	12	1.0	300	1.8	4*	20*	375*
14–18 y	900	75	5*	15	75*	1.2	1.3	16	1.3	400	2.4	5*	25*	550*
19–30 y	900	90	5*	15	120*	1.2	1.3	16	1.3	400	2.4	5*	30*	550*
31–50 y	900	90	5*	15	120*	1.2	1.3	16	1.3	400	2.4	5*	30*	550*
51–70 y	900	90	10*	15	120*	1.2	1.3	16	1.7	400	2.4^{i}	5*	30*	550*
> 70 y	900	90	15*	15	120*	1.2	1.3	16	1.7	400	2.4^{i}	5*	30*	550*
Females														
9–13 y	600	45	5*	11	60*	0.9	0.9	12	1.0	300	1.8	4*	20*	375*
14–18 y	700	65	5*	15	75*	1.0	1.0	14	1.2	400 ^{<i>i</i>}	2.4	5*	25*	400*
19–30 y	700	75	5*	15	90*	1.1	1.1	14	1.3	400 ⁱ	2.4	5*	30*	425*
31–50 y	700	75	5*	15	90*	1.1	1.1	14	1.3	400 ⁱ	2.4	5*	30*	425*
51–70 y	700	75	10*	15	90*	1.1	1.1	14	1.5	400	2.4 ^h	5*	30*	425*
> 70 y	700	75	15*	15	90*	1.1	1.1	14	1.5	400	2.4 ^h	5*	30*	425*
Pregnancy														
14–18 y	750	80	5*	15	75*	1.4	1.4	18	1.9	600 ⁱ	2.6	6*	30*	450*
19–30 y	770	85	5*	15	90*	1.4	1.4	18	1.9	600 ^j	2.6	6*	30*	450*
31–50 y	770	85	5*	15	90*	1.4	1.4	18	1.9	600 ⁱ	2.6	6*	30*	450*
Lactation														
14–18 y	1,200	115	5*	19	75*	1.4	1.6	17	2.0	500	2.8	7*	35*	550*
19–30 y	1,300	120	5*	19	90*	1.4	1.6	17	2.0	500	2.8	7*	35*	550*
31–50 y	1,300	120	5*	19	90*	1.4	1.6	17	2.0	500	2.8	7*	35*	550*

NOTE: This table (taken from the DRI reports, see www.nap.edu) presents Recommended Dietary Allowances (RDAs) in **bold type** and Adequate Intakes (AIs) in ordinary type followed by an asterisk (*). RDAs and AIs may both be used as goals for individual intake. RDAs are set to meet the needs of almost all (97 to 98 percent) individuals in a group. For healthy breastfed infants, the AI is the mean intake. The AI for other life stage and gender groups is believed to cover needs of all individuals in the group, but lack of data or uncertainty in the data prevent being able to specify with confidence the percentage of individuals covered by this intake.

^{*a*}As retinol activity equivalents (RAEs). 1 RAE = 1 μ g retinol, 12 μ g β -carotene, 24 μ g α -carotene, or 24 μ g β -cryptoxanthin. The RAE for dietary provitamin A carotenoids is twofold greater than retinol equivalents (RE), whereas the RAE for preformed vitamin A is the same as RE.

^{*b*}As cholecalciferol. 1 μ g cholecalciferol = 40 IU vitamin D.

^{*c*}In the absence of adequate exposure to sunlight.

^{*d*}As α -tocopherol. α -Tocopherol includes *RR*- α -tocopherol, the only form of α -tocopherol that occurs naturally in foods, and the 2*R*-stereoisomeric forms of α -tocopherol (*RR*-, *RSR*-, *RRS*-, and *RSS*- α -tocopherol) that occur in fortified foods and supplements. It does not include the 2*S*-stereoisomeric forms of α -tocopherol (*SRR*-, *SSR*-, *SRS*-, and *SSS*- α -tocopherol), also found in fortified foods and supplements.

^eAs niacin equivalents (NE). 1 mg of niacin = 60 mg of tryptophan; 0–6 months = preformed niacin (not NE).

^{*f*}As dietary folate equivalents (DFE). 1 DFE = 1 μ g food folate = 0.6 μ g of folic acid from fortified food or as a supplement consumed with food = 0.5 μ g of a supplement taken on an empty stomach.

^gAlthough AIs have been set for choline, there are few data to assess whether a dietary supply of choline is needed at all stages of the life cycle, and it may be that the choline requirement can be met by endogenous synthesis at some of these stages.

^hBecause 10 to 30 percent of older people may malabsorb food-bound B_{12} , it is advisable for those older than 50 years to meet their RDA mainly by consuming foods fortified with B_{12} or a supplement containing B_{12} .

ⁱIn view of evidence linking folate intake with neural tube defects in the fetus, it is recommended that all women capable of becoming pregnant consume 400 µg from supplements or fortified foods in addition to intake of food folate from a varied diet.

^{*j*}It is assumed that women will continue consuming 400 µg from supplements or fortified food until their pregnancy is confirmed and they enter prenatal care, which ordinarily occurs after the end of the periconceptional period—the critical time for formation of the neural tube.

Life Stage Group	Calcium (mg/d)	Chromium (µg/d)	Copper (µg/d)	Fluoride (mg/d)	Iodine (µg/d)	Iron (mg/d)	Magnesium (mg/d)	Manganese (mg/d)	Molybdenum (µg/d)	Phosphorus (mg/d)	Selenium (µg/d)	Zinc (mg/d)	Potassium (g/d)	Sodium (g/d)	Chloride (g/d)
Infants	(ing/u)	(µg/u)	(µg/u)	(ing/u)	(µg/u)	(ing/u)	(ing/u)	(ing/u)	(µg/u)	(IIIg/u)	(µg/u)	(ilig/u)	(gru)	(g/u)	(g/u)
0-6 mo	210*	0.2*	200*	0.01*	110*	0.27*	30*	0.003*	2*	100*	15*	2*	0.4*	0.12*	0.18*
7–12 mo	270*	5.5*	200* 220*	0.5*	130*	11	75*	0.6*	3*	275*	20*	3	0.7*	0.12	0.18
Children	270	5.5	220	0.5	150	11	15	0.0	5	215	20	5	0.7	0.57	0.57
1–3 y	500*	11*	340	0.7*	90	7	80	1.2*	17	460	20	3	3.0*	1.0*	1.5*
4–8 y	800*	15*	440	1*	90	10	130	1.5*	22	500	30	5	3.8*	1.2*	1.9*
4–8 y Males	800	15	440	1	20	10	150	1.5	22	300	50	3	5.0	1.2	1.9
9–13 y	1,300*	25*	700	2*	120	8	240	1.9*	34	1,250	40	8	4.5*	1.5*	2.3*
9–13 y 14–18 y	1,300*	25 35*	890	3*	120	11	410	2.2*	43	1,250	55	11	4.7*	1.5*	2.3*
14–18 y 19–30 y	1,000*	35*	900	3. 4*	150	8	400	2.2*	43 45	700	55 55	11	4.7*	1.5*	2.3*
31–50 y	1,000*	35*	900 900	4*	150	8	400	2.3*	45 45	700	55 55	11	4.7*	1.5*	2.3*
51–50 y 51–70 y	1,000*	30*	900 900	4*	150	8	420	2.3*	45	700	55 55	11	4.7*	1.3*	2.0*
> 70 y	1,200*	30*	900 900	4*	150	8	420	2.3*	45 45	700	55 55	11	4.7*	1.2*	1.8*
Females	1,200	50	900	7	150	0	420	2.5	43	700	55	11	4.7	1.2	1.0
9–13 y	1,300*	21*	700	2*	120	8	240	1.6*	34	1,250	40	8	4.5*	1.5*	2.3*
9=13 y 14-18 y	1,300*	24*	890	2 3*	120	15	360	1.6*	43		40 55	9	4.7*	1.5*	2.3*
14–18 y 19–30 y	1,000*	24*	890 900	3*	150	15	310	1.8*	43 45	1,250 700	55 55	8	4.7*	1.5*	2.3*
19=30 y 31=50 y	1,000*	25* 25*	900 900	3* 3*	150	18	310	1.8*		700	55 55	8 8	4.7* 4.7*	1.5*	2.3*
51–30 y 51–70 y	1,000*	20*	900 900	3*	150	8	320 320	1.8*	45 45	700	55 55	8 8	4.7*	1.3*	2.3*
> 70 y	1,200*	20*	900 900	3*	150	8	320	1.8*	43 45	700	55 55	8	4.7*	1.3*	1.8*
> 70 y Pregnancy	1,200	201	900	3.	150	0	320	1.0	43	700	33	o	4.7	1.2	1.0
14–18 y	1,300*	29*	1,000	3*	220	27	400	2.0*	50	1,250	60	12	4.7*	1.5*	2.3*
14–18 y 19–30 y	1,000*	30*	1,000	3*	220	27	350	2.0*	50 50	700	60	12	4.7*	1.5*	2.3*
31–50 y	1,000*	30*	1,000	3*	220	27	360	2.0*	50 50	700	60	11	4.7*	1.5*	2.3*
Lactation	1,000	50	1,000	5	220	<i>41</i>	500	2.0	50	700	00	11	4./	1.5	2.5
14–18 y	1,300*	44*	1,300	3*	290	10	360	2.6*	50	1,250	70	13	5.1*	1.5*	2.3*
19–30 y	1,000*	45*	1,300	3*	290	9	310	2.6*	50 50	700	70	13	5.1*	1.5*	2.3*
31–50 y	1,000*	45*	1,300	3*	290	9	320	2.6*	50 50	700	70	12	5.1*	1.5*	2.3*

Dietary Reference Intakes (DRIs): Recommended Intakes for Individuals, Elements

Food and Nutrition Board, Institute of Medicine, National Academies

NOTE: This table presents Recommended Dietary Allowances (RDAs) in **bold type** and Adequate Intakes (AIs) in ordinary type followed by an asterisk (*). RDAs and AIs may both be used as goals for individual intake. RDAs are set to meet the needs of almost all (97 to 98 percent) individuals in a group. For healthy breastfed infants, the AI is the mean intake. The AI for other life stage and gender groups is believed to cover needs of all individuals in the group, but lack of data or uncertainty in the data prevent being able to specify with confidence the percentage of individuals covered by this intake.

SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B₆, Folate, Vitamin B₁₂, Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for Vitamin C, Vitamin C, Vitamin E, Selenium, and Carotenoids (2000); Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001); and Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate (2004). These reports may be accessed via http://www.nap.edu.

Life Stage	Vitamin A	Vitamin C	Vitamin D	Vitamin E	Vitamin K	Thiamin	Ribo-	Niacin	Vitamin B ₆	Folate	Vitamin B ₁₂	Pantothenic	Biotin	Choline	Carote-
Group	$(\mu g/d)^b$	(mg/d)	(µg/d)	$(mg/d)^{c,d}$			flavin	$(mg/d)^d$	(mg/d)	$(\mu g/d)^d$		Acid		(g/d)	noids ^e
Infants															
0–6 mo	600	ND^{f}	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
7–12 mo	600	ND	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Children															
1-3 y	600	400	50	200	ND	ND	ND	10	30	300	ND	ND	ND	1.0	ND
4-8 y	900	650	50	300	ND	ND	ND	15	40	400	ND	ND	ND	1.0	ND
Males, Females															
9–13 y	1,700	1,200	50	600	ND	ND	ND	20	60	600	ND	ND	ND	2.0	ND
14–18 y	2,800	1,800	50	800	ND	ND	ND	30	80	800	ND	ND	ND	3.0	ND
19–70 y	3,000	2,000	50	1,000	ND	ND	ND	35	100	1,000	ND	ND	ND	3.5	ND
> 70 y	3,000	2,000	50	1,000	ND	ND	ND	35	100	1,000	ND	ND	ND	3.5	ND
Pregnancy															
14–18 y	2,800	1,800	50	800	ND	ND	ND	30	80	800	ND	ND	ND	3.0	ND
19–50 y	3,000	2,000	50	1,000	ND	ND	ND	35	100	1,000	ND	ND	ND	3.5	ND
Lactation															
14–18 y	2,800	1,800	50	800	ND	ND	ND	30	80	800	ND	ND	ND	3.0	ND
19–50 y	3,000	2,000	50	1,000	ND	ND	ND	35	100	1,000	ND	ND	ND	3.5	ND

Dietary Reference Intakes (DRIs): Tolerable Upper Intake Levels (UL^a), Vitamins Food and Nutrition Board Institute of Medicine, National Academies

 a UL = The maximum level of daily nutrient intake that is likely to pose no risk of adverse effects. Unless otherwise specified, the UL represents total intake from food, water, and supplements. Due to lack of suitable data, ULs could not be established for vitamin K, thiamin, riboflavin, vitamin B₁₂, pantothenic acid, biotin, carotenoids. In the absence of ULs, extra caution may be warranted in consuming levels above recommended intakes.

^b As preformed vitamin A only.

^{*c*} As α -tocopherol; applies to any form of supplemental α -tocopherol.

^d The ULs for vitamin E, niacin, and folate apply to synthetic forms obtained from supplements, fortified foods, or a combination of the two.

^e β-Carotene supplements are advised only to serve as a provitamin A source for individuals at risk of vitamin A deficiency.

^fND = Not determinable due to lack of data of adverse effects in this age group and concern with regard to lack of ability to handle excess amounts. Source of intake should be from food only to prevent high levels of intake.

SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B₆, Folate, Vitamin B₁₂, Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (2000); and Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001). These reports may be accessed via http://www.nap.edu.

						Food	i and Ni	itrition .	Board, In	stitute of	Medicif	ne, Natio	onal Aca	demies							
	Arse-		Calci-	Chrom-		Fluor-			Magnes-	Manga-	Molyb-		Phos-	Potas-	Selen-	Sili-		Vana-		Sodi-	Chlor-
Life Stage	nic ^b	Boron	um	ium	Copper	ide	Iodine	Iron	ium	nese	denum	Nickel	phorus	sium	ium	con^d	Sulfate	dium	Zinc	um	ide
Group		(mg/d)	(g/d)		(µg/d)	(mg/d)	(µg/d)	(mg/d)	$(mg/d)^c$	(mg/d)	(µg/d)	(mg/d)	(g/d)		(µg/d)			$(mg/d)^e$	(mg/d)	(g/d)	(g/d)
Infants																					
0-6 mo	ND	ND	ND	ND	ND	0.7	ND	40	ND	ND	ND	ND	ND	ND	45	ND	ND	ND	4	ND	ND
7-12 mo	ND	ND	ND	ND	ND	0.9	ND	40	ND	ND	ND	ND	ND	ND	60	ND	ND	ND	5	ND	ND
Children																					
1-3 y	ND	3	2.5	ND	1,000	1.3	200	40	65	2	300	0.2	3	ND	90	ND	ND	ND	7	1.5	2.3
4-8 y	ND	6	2.5	ND	3,000	2.2	300	40	110	3	600	0.3	3	ND	150	ND	ND	ND	12	1.9	2.9
Males,																					
Females																					
9–13 y	ND	11	2.5	ND	5,000	10	600	40	350	6	1,100	0.6	4	ND	280	ND	ND	ND	23	2.2	3.4
14–18 y	ND	17	2.5	ND	8,000	10	900	45	350	9	1,700	1.0	4	ND	400	ND	ND	ND	34	2.3	3.6
19–70 y	ND	20	2.5	ND	10,000	10	1,100	45	350	11	2,000	1.0	4	ND	400	ND	ND	1.8	40	2.3	3.6
>70 y	ND	20	2.5	ND	10,000	10	1,100	45	350	11	2,000	1.0	3	ND	400	ND	ND	1.8	40	2.3	3.6
Pregnancy																					
14–18 y	ND	17	2.5	ND	8,000	10	900	45	350	9	1,700	1.0	3.5	ND	400	ND	ND	ND	34	2.3	3.6
19–50 y	ND	20	2.5	ND	10,000	10	1,100	45	350	11	2,000	1.0	3.5	ND	400	ND	ND	ND	40	2.3	3.6
Lactation																					
14–18 y	ND	17	2.5	ND	8,000	10	900	45	350	9	1,700	1.0	4	ND	400	ND	ND	ND	34	2.3	3.6
19–50 y	ND	20	2.5	ND	10,000	10	1,100	45	350	11	2,000	1.0	4	ND	400	ND	ND	ND	40	2.3	3.6

Dietary Reference Intakes (DRIs): Tolerable Upper Intake Levels (UL^a), Elements

^{*a*} UL = The maximum level of daily nutrient intake that is likely to pose no risk of adverse effects. Unless otherwise specified, the UL represents total intake from food, water, and supplements. Due to lack of suitable data, ULs could not be established for arsenic, chromium, silicon, potassium, and sulfate. In the absence of ULs, extra caution may be warranted in consuming levels above recommended intakes.

^b Although the UL was not determined for arsenic, there is no justification for adding arsenic to food or supplements.

^c The ULs for magnesium represent intake from a pharmacological agent only and do not include intake from food and water.

^d Although silicon has not been shown to cause adverse effects in humans, there is no justification for adding silicon to supplements.

^e Although vanadium in food has not been shown to cause adverse effects in humans, there is no justification for adding vanadium to food and vanadium supplements should be used with caution. The UL is based on adverse effects in laboratory animals and this data could be used to set a UL for adults but not children and adolescents.

^f ND = Not determinable due to lack of data of adverse effects in this age group and concern with regard to lack of ability to handle excess amounts. Source of intake should be from food only to prevent high levels of intake.

SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B₆, Folate, Vitamin B₁₂, Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (2000); Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001); and Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate (2004). These reports may be accessed via http://www.nap.edu.

	F	ood and Nutrition	Board, Institute of	Medicine, Na	ational Acade	mies	
			Weight for BMI	EER, Men ^d	(kcal/day)	EER, Wom	en ^d (kcal/day)
Height		of 18.5 kg/m ²	of 24.99 kg/m ²	BMI of	BMI of	BMI of	BMI of 24.99
(m [in])	PAL^{b}	(kg [lb])	(kg [lb])	18.5 kg/m^2	24.99 kg/m^2	18.5 kg/m^2	kg/m ²
1.50 (59)	Sedentary	41.6 (92)	56.2 (124)	1,848	2,080	1,625	1,762
	Low active			2,009	2,267	1,803	1,956
	Active			2,215	2,506	2,025	2,198
	Very active			2,554	2,898	2,291	2,489
1.65 (65)	Sedentary	50.4 (111)	68.0 (150)	2,068	2,349	1,816	1,982
	Low active			2,254	2,566	2,016	2,202
	Active			2,490	2,842	2,267	2,477
	Very active			2,880	3,296	2,567	2,807
1.80(71)	Sedentary	59.9 (132)	81.0 (178)	2,301	2,635	2,015	2,211
	Low active			2,513	2,884	2,239	2,459
	Active			2,782	3,200	2,519	2,769
	Very active			3,225	3,720	2,855	3,141

Dietary Reference Intakes (DRIs): Estimated Energy Requirements (EER) for Men and Women
30 Years of Age ^a

^a For each year below 30, add 7 kcal/day for women and 10 kcal/day for men. For each year above 30, subtract 7 kcal/day for women and 10 kcal/day for men.

^b PAL = physical activity level. ^c BMI = body mass index.

^d Derived from the following regression equations based on doubly labeled water data:

Adult man: $EER = 662 - 9.53 \times age(y) + PA \times (15.91 \times wt [kg] + 539.6 \times ht [m])$

Adult woman: $EER = 354 - 6.91 \times age (y) + PA \times (9.36 \times wt [kg] + 726 \times ht [m])$

Where PA refers to coefficient for PAL

PAL = total energy expenditure + basal energy expenditure

PA = 1.0 if $PAL \ge 1.0 < 1.4$ (sedentary)

PA = 1.12 if $PAL \ge 1.4 < 1.6$ (low active)

PA = 1.27 if $PAL \ge 1.6 < 1.9$ (active)

PA = 1.45 if $PAL \ge 1.9 < 2.5$ (very active)

1000 and 1001 20010, 115			
	Range (percent of	energy)	
Macronutrient	Children, 1–3 y	Children, 4–18 y	Adults
Fat	30-40	25–35	20-35
<i>n</i> -6 polyunsaturated fatty acids ^{<i>a</i>} (linoleic acid)	5-10	5-10	5-10
<i>n</i> -3 polyunsaturated fatty acids ^{<i>a</i>} (α -linolenic acid)	0.6-1.2	0.6-1.2	0.6-1.2
Carbohydrate	45-65	45-65	45-65
Protein	5-20	10-30	10-35

Dietary Reference Intakes (DRIs): Acceptable Macronutrient Distribution Ranges
Food and Nutrition Board, Institute of Medicine, National Academies

^{*a*} Approximately 10% of the total can come from longer-chain n-3 or n-6 fatty acids.

SOURCE: Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (2002).

	Food and Total	Nutrition Board,	Institute Total	e of Med	Linoleic	onal Academies α-Linolenic	
Life Stage Group	Water ^a	Carbohydrate	Fiber	Fat	Acid	Acid	Protein ^b
Life Stage Gloup			(g/d)	(g/d)	(g/d)	(g/d)	(g/d)
T C	(L/d)	(g/d)	(g/u)	(g/u)	(g/u)	(g/u)	(g/u)
Infants	0.7.			0.1.1	4 4 14	0.5%	0.1.4
0–6 mo	0.7*	60*	ND	31*	4.4*	0.5*	9.1*
7–12 mo	0.8*	95*	ND	30*	4.6*	0.5*	11.0 ^{<i>c</i>}
Children							
1–3 y	1.3*	130	19*	ND	7*	0.7*	13
4–8 y	1.7*	130	25*	ND	10*	0.9*	19
Males							
9–13 y	2.4*	130	31*	ND	12*	1.2*	34
14–18 y	3.3*	130	38*	ND	16*	1.6*	52
19–30 y	3.7*	130	38*	ND	17*	1.6*	56
31–50 y	3.7*	130	38*	ND	17*	1.6*	56
51–70 y	3.7*	130	30*	ND	14*	1.6*	56
> 70 y	3.7*	130	30*	ND	14*	1.6*	56
Females							
9–13 y	2.1*	130	26*	ND	10*	1.0*	34
14–18 y	2.3*	130	26*	ND	11*	1.1*	46
19–30 y	2.7*	130	25*	ND	12*	1.1*	46
31–50 y	2.7*	130	25*	ND	12*	1.1*	46
51–70 y	2.7*	130	21*	ND	11*	1.1*	46
> 70 y	2.7*	130	21*	ND	11*	1.1*	46
Pregnancy							
14–18 y	3.0*	175	28*	ND	13*	1.4*	71
19–30 y	3.0*	175	28*	ND	13*	1.4*	71
31–50 y	3.0*	175	28*	ND	13*	1.4*	71
Lactation		-	-	-	-		-
14–18 y	3.8*	210	29*	ND	13*	1.3*	71
19–30 y	3.8*	210	29*	ND	13*	1.3*	71
31–50 y	3.8*	210	29*	ND	13*	1.3*	71
NOTE: This table							

Dietary Reference Intakes (DRIs): Recommended Intakes for Individuals, Macronutrients Food and Nutrition Board Institute of Medicine National Academies

NOTE: This table presents Recommended Dietary Allowances (RDAs) in **bold** type and Adequate Intakes (AIs) in ordinary type followed by an asterisk (*). RDAs and AIs may both be used as goals for individual intake. RDAs are set to meet the needs of almost all (97 to 98 percent) individuals in a group. For healthy infants fed human milk, the AI is the mean intake. The AI for other life stage and gender groups is believed to cover the needs of all individuals in the group, but lack of data or uncertainty in the data prevent being able to specify with confidence the percentage of individuals covered by this intake. ^{*a*} *Total* water includes all water contained in food, beverages, and drinking water.

^b Based on 0.8 g/kg body weight for the reference body weight.

^c Change from 13.5 in prepublication copy due to calculation error.

Food and Nutrit	ion Board, Institute of Medicine, National Academies
Macronutrient	Recommendation
Dietary cholesterol	As low as possible while consuming a nutritionally adequate diet
Trans fatty acids	As low as possible while consuming a nutritionally adequate diet
Saturated fatty acids	As low as possible while consuming a nutritionally adequate diet
Added sugars	Limit to no more than 25% of total energy

SOURCE: Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (2002).

Life Stage	СНО	Protein	Vit A	Vit C	Vit E	Thiamin	Ribo- flavin	Niacin	Vit B ₆	Folate	Vit B ₁₂	Copper	Iodine	Iron	Magnes- ium	Molyb- denum	Phos- phorus	Sele- nium	Zinc
Group	(g/d)	$(g/d)^a$	$(\mu g/d)^b$	(mg/d)	$(mg/d)^c$	(mg/d)	(mg/d)	$(mg/d)^d$	(mg/d)	$(\mu g/d)^b$	(µg/d)	(µg/d)	(µg/d)	(mg/d)	(mg/d)	(µg/d)	(mg/d)	(µg/d)	(mg/d)
Infants																			
7–12 mo		9*												6.9					2.5
Children																			
1–3 y	100	11	210	13	5	0.4	0.4	5	0.4	120	0.7	260	65	3.0	65	13	380	17	2.5
4–8 y	100	15	275	22	6	0.5	0.5	6	0.5	160	1.0	340	65	4.1	110	17	405	23	4.0
Males																			
9–13 y	100	27	445	39	9	0.7	0.8	9	0.8	250	1.5	540	73	5.9	200	26	1,055	35	7.0
14–18 y	100	44	630	63	12	1.0	1.1	12	1.1	330	2.0	685	95	7.7	340	33	1,055	45	8.5
19–30 y	100	46	625	75	12	1.0	1.1	12	1.1	320	2.0	700	95	6	330	34	580	45	9.4
31–50 y	100	46	625	75	12	1.0	1.1	12	1.1	320	2.0	700	95	6	350	34	580	45	9.4
51–70 y	100	46	625	75	12	1.0	1.1	12	1.4	320	2.0	700	95	6	350	34	580	45	9.4
> 70 y	100	46	625	75	12	1.0	1.1	12	1.4	320	2.0	700	95	6	350	34	580	45	9.4
Females																			
9–13 y	100	28	420	39	9	0.7	0.8	9	0.8	250	1.5	540	73	5.7	200	26	1,055	35	7.0
14–18 y	100	38	485	56	12	0.9	0.9	11	1.0	330	2.0	685	95	7.9	300	33	1,055	45	7.3
19–30 y	100	38	500	60	12	0.9	0.9	11	1.1	320	2.0	700	95	8.1	255	34	580	45	6.8
31–50 y	100	38	500	60	12	0.9	0.9	11	1.1	320	2.0	700	95	8.1	265	34	580	45	6.8
51–70 y	100	38	500	60	12	0.9	0.9	11	1.3	320	2.0	700	95	5	265	34	580	45	6.8
> 70 y	100	38	500	60	12	0.9	0.9	11	1.3	320	2.0	700	95	5	265	34	580	45	6.8
Pregnancy																			
14–18 y	135	50	530	66	12	1.2	1.2	14	1.6	520	2.2	785	160	23	335	40	1,055	49	10.5
19–30 y	135	50	550	70	12	1.2	1.2	14	1.6	520	2.2	800	160	22	290	40	580	49	9.5
31–50 y	135	50	550	70	12	1.2	1.2	14	1.6	520	2.2	800	160	22	300	40	580	49	9.5
Lactation																			
14–18 y	160	60	885	96	16	1.2	1.3	13	1.7	450	2.4	985	209	7	300	35	1,055	59	10.9
19–30 y	160	60	900	100	16	1.2	1.3	13	1.7	450	2.4	1,000	209	6.5	255	36	580	59	10.4
31–50 y	160	60	900	100	16	1.2	1.3	13	1.7	450	2.4	1,000	209	6.5	265	36	580	59	10.4

Dietary Reference Intakes (DRIs): Estimated Average Requirements for Groups

Food and Nutrition Board, Institute of Medicine, National Academies

NOTE: This table presents Estimated Average Requirements (EARs), which serve two purposes: for assessing adequacy of population intakes, and as the basis for calculating Recommended Dietary Allowances (RDAs) for individuals for those nutrients. EARs have not been established for vitamin D, vitamin K, pantothenic acid, biotin, choline, calcium, chromium, fluoride, manganese, or other nutrients not yet evaluated via the DRI process. ^{*a*} For individual at reference weight (Table 1-1). *indicates change from prepublication copy due to calculation error.

^b As retinol activity equivalents (RAEs). 1 RAE = 1 μ g retinol, 12 μ g β -carotene, 24 μ g α -carotene, or 24 μ g β -cryptoxanthin. The RAE for dietary provitamin A carotenoids is two-fold greater than retinol equivalents (RE), whereas the RAE for preformed vitamin A is the same as RE.

^cAs α-tocopherol. α-Tocopherol includes *RRR*-α-tocopherol, the only form of α-tocopherol that occurs naturally in foods, and the 2*R*-stereoisomeric forms of α-tocopherol (*RRR*-, *RSR*-, *RRS*-, and *RSS*-α-tocopherol) that occur in fortified foods and supplements. It does not include the 2*S*-stereoisomeric forms of α-tocopherol (*SRR*-, *SSR*-, *SRS*-, and *SSS*-α-tocopherol), also found in fortified foods and supplements.

^{*d*}As niacin equivalents (NE). 1 mg of niacin = 60 mg of tryptophan.

"As dietary folate equivalents (DFE). 1 DFE = 1 µg food folate = 0.6 µg of folic acid from fortified food or as a supplement consumed with food = 0.5 µg of a supplement taken on an empty stomach.

SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B₆, Folate, Vitamin B₁₂, Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (2000); Dietary Reference Intakes for Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001), and Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (2002). These reports may be accessed via www.nap.edu.